CSU44012 Topics in Functional Programming
Assignment #2
Minesweeper

Jack Harley jharley@tcd.ie — Student No. 16317123

January 2021

Jack Harley jharley@tcd.ie
1 1 1 1 Instructions: Click on a square to uncover it.
3[1 1 1 1 Right click a square to flag it.
1 111 111
2021 1 Flagged squares will turn yellow. If you hit a
1 1 mine all mines will instantly be revealed as red
1 111 1(1]2]1 sqguares.
1 1 1 1 1)
1 112 DEIE KR You win the game once you have uncovered all
1 1 1 squares that do not have mines. If this occurs,
21 2 1 the entire board will turn green (except the
1 1 1 bomb) to indicate your win!
2 2 1
1 EIEI N EIEIERE At any time, you can refresh the page to start a
3[1]1 1 2[1[1 1[1]2[1]1 new game.
1)1 1111 1 2|1
I
VR == : Good luck!
1 2[1]2]2]2]1 1 2[1
1/1]2] |2 2[1[1]1
1(1|2|2(2]|2
1
Contents

1 Introduction

2 Design and Implementation

2.1 Basic Minesweeper Model e
2.2 Creating a Game L e
2.3 Handling Game Moves e e e

2.3. 1 UNCOVET o o ot e e e e e e e e

2.3.2 Flag e
2.4 Program Startup L L e e
2.5 Rendering the Game Board

3 Reflection

CUB W W w NN N

(=]

1 Introduction

I have implemented a fully functional Minesweeper game in Haskell with the Threepenny GUI serving the interface,
and also a probability based autosolver which can perform a move by clicking an ” Autoplay” button.

The code is well commented and I have also documented and explained key parts of it in this PDF.
Stack successfully builds and executes the solution binary, serving the GUI at http://localhost:8023.

I attempted to integrate it into an Electron application, so that the interface would launch automatically into an
Electron window (embedded Chrome, see https://www.electronjs.org/) but unfortunately realized partway
through that the effort required to get it working was likely to be disproportionate to the improvement in
functionality.

2 Design and Implementation

I will cover a few of the more important functions in some detail in this section. The comments included in the
source files should be sufficient to explain the simpler function.

2.1 Basic Minesweeper Model

The model for the game is implemented in Minesweeper.hs.

I modelled the game board as an ADT with 4 fields:

data Board = Board { size :: Int, mines :: Grid, uncovered :: Grid, flagged :: Grid }

size defines the horizontal and vertical length in squares of the game grid (all grids are squares). mines,
uncovered and flagged hold data structures that respectively indicate the squares that have mines, have been
uncovered by the user and have been flagged by the user.

The Grid type is a 2D list of Booleans with the outer list denoting rows and the inner list denoting columns:

type Grid = [[Booll]l]

With this structure, you can determine whether the 2nd row down, 4th column across has a mine with the following
simple expression: (N.B. rows and columns are 0-indexed)

(mines !'! 1) !! 3

And indeed this is how the hasMine function is implemented in my code:

hasMine :: Board -> Square -> Bool
hasMine b (r,c) | validSquare b (r,c) = (mines b !! r) Il ¢

Throughout my implementation, particular squares are referred to with a 2-tuple defining first the row and then
the column as 0-indexed integers, with (0,0) being the square at the top left of the board:

type Square = (Int, Int)

http://localhost:8023
https://www.electronjs.org/

= e

W N e

R O © 00 N Ok W -

2.2 Creating a Game

A fresh game board is initialised with the createBoard function:

createBoard :: Int -> Float -> StdGen -> Board

createBoard size mineRatio rng = Board size (seedGrid rng mineRatio (createGrid False size))
(createGrid False size)
(createGrid False size)

The function requires a size (number of squares in both horizontal and vertical directions), a ”mine ratio” and a
random number generator instance. It then produces a Board instance with three initialised grids. The uncovered
and flagged grids are initialised with all False values (since the user will not have uncovered or flagged any squares

yet).

The mines grid is initialised with all False values, but then the seedGrid function is used to randomly seed mines
into the grid by making a random decision with probability of the provided mineRatio for every square on the
grid.

For example, with a mine ratio of 0.1, every square will have a one in ten chance of having a mine, and after the
decisions have been made for every square, roughly one tenth of the grid will have mines.

seedGrid works by splitting the random number generator repeatedly, one instance for each row of the grid, and
then calling seedList on each row. The seeded rows are then joined back together at the end of the recursion. The
full source for seedGrid, seedList and seedList’ can be found in the appendix and project files.

2.3 Handling Game Moves
2.3.1 Uncover

Uncover is triggered in the Ul by left clicking on a square. It triggers the following function:

uncover :: Board -> Square -> Board
uncover b (r,c) | not $ validSquare b (r,c) = b
| isUncovered b (r,c) = b

| hasMine b (r,c) = let Board s m u f = b
in Board s m (createGrid True s) f

| otherwise = let Board s m u f = b

(rowsA, row : rowsB) = splitAt r u

(cellsA, _ cellsB) = splitAt c row

newRow = cellsA ++ True : cellsB

newRows = rowsA ++ newRow : rowsB

in uncoverAdjacentsIfSafe (Board s m newRows f) (r,c)

The first guard handles cases where the provided Square is not valid (lies outside the edge of the Board), in this
case, the Board is returned unchanged.

The second guard handles cases where the provided Square is already uncovered, and again the board is returned
unchanged.

The third guard handles cases where a user clicks on a mine. In this case the game has ended and the player
has lost, therefore the function simply replaces the uncovered Grid with an all True Grid. The user will therefore
immediately see the entire grid, including all of the mines.

The final guard handles normal cases where the Square clicked is safe. It reconstructs the uncovered Grid, replacing
the Square at (r,c) with a True status. It then also calls the uncoverAdjacentsIfSafe function on the modified Board:

[y

1
2
3

O ©W 00N O WN -

uncoverAdjacentsIfSafe :: Board -> Square -> Board
uncoverAdjacentsIfSafe b (r,c) | adjacentMines b (r,c) == 0 = uncoverAll b $ adjacentSquares (r,c)
| otherwise = b

uncoverAdjacentsIfSafe checks if the newly uncovered Square has 0 adjacent mines, and if so, uncovers all of them.
This can trigger recursion where large parts of the Board will be uncovered.

2.3.2 Flag

Flag is triggered in the UI by right clicking on a square. It is intended to be used when a user wants to mark a
square they think has a mine. It triggers the following function:

flag :: Board -> Square -> Board
flag b (r,c) | not $ validSquare b (r,c) =D
| isUncovered b (r,c) = b
| isFlagged b (r,c) = b
| otherwise = let Board s m u f = b
(rowsA, row : rowsB) = splitAt r f
(cellshA, _ cellsB) = splitAt c row
newRow = cellsA ++ True : cellsB
newRows = rowsA ++ newRow : rowsB

in Board s m u newRows

Flag works similarly to uncover.

If the square is not valid, already uncovered or already flagged then the board is returned unchanged. We could
combine these cases into a single guard but I think readability is better with them separately.

Then we use the same procedure to replace the flagged Grid with a new grid, with the right clicked square’s status
changed to True.

2.4 Program Startup

The entry point for the program is the main function. It calls start GUI with the setup function as a parameter.
ThreePenny then initialises using the setup function.

Setup registers two stylesheets: the minified bootstrap.min.css I use in all of my web related projects and a
minesweeper.css file I wrote to give some styling to the page and the game board.

Setup then creates a new pseudo random number generator and initialises a new game board. It then stores the
game board state into a global IORef. This IORef will be modified when updating state due to a user action, and
read from during a re-render of the board. The unwrapped Board instance (b) is also maintained and passed to
the rendering functions for the initial render:

rng <- 1liftI0 newStdGen
let b = createBoard 20 0.08 rng :: Board
iob <- 1iftI0 $ newIORef D

The body of the page is then rendered, one part to note is the custom JS I include at the bottom of the body:

mkElement "script" # set (attr "src") "/static/custom.js"]

This custom.js script is a one-liner which prevents right clicks from opening a menu when playing the game:

document .addEventListener (’contextmenu’, event => event.preventDefault ());

O W N

© 00N O WN -

o
w N = O

© 00N O WN -

= e
= O

2.5 Rendering the Game Board

The board itself is rendered as a table with ID ”table” in a div with ID ”gameCont”:

UIL.div # set UI.id_ "gameCont" #+ [mkElement "table" # set UI.id_ "table" #+ rows iob b 0]

This calls the rows function with an IORef Board and an already unwrapped copy of the Board. Rows then
recursively calls cells to render each row of cells, and cells calls the cell function to render the individual cells:

rows iob b r | r < size b = (mkElement "tr" #+ cells iob b r 0) : rows iob b (r+1)
| otherwise = []
cells iob b r ¢ | ¢ < size b = cell iob b (r,c) : cells iob b r (c+1)
| otherwise = []

The cell function receives an (r,c) pair and renders that specific cell, calling functions from Minesweeper.hs to
determine the desired background colour, text colour and text to display in each cell.

Two event handlers are also attached on to the cell to handle left and right clicks, triggering an update of the
IORef Board by uncovering or flagging a square respectively.
cell iob b (r,c) = do

cell <- mkElement "td" #. (squareBgColour b (r,c) ++ " " ++ squareTextColour b (r,c))
#+ [string $ squareAscii b (r,c)]

on UI.click cell $ _ -> do
1iftI0 $ modifyIORef’ iob $ \oldB -> uncover oldB (r,c)
refresh iob

on UI.contextmenu cell $ _ -> do
1iftI0 $ modifyIORef’ iob $ \oldB -> flag o0ldB (r,c)
refresh iob

return cell

You will note that after an update to the IORef Board due to a player move, the refresh function is called. This
function reads an up to date copy of the Board state from the IORef Board and re-renders the game board,
replacing the old copy:

refresh iob = do
b <- 1iftI0 $ readIORef iob

table <- getElementById w "table"
let table’ = fromJust table

cont <- getElementById w "gameCont"
let cont’ = return $ fromJust cont

cont’ #+ [mkElement "table" # set UI.id_ "table" #+ rows iob b 0]

delete table’

3 Reflection

This was an interesting project and I have learned a lot from it.

On reflection I'm not hugely happy with the core data structures I chose to represent the game state and believe
I fell into the trap of thinking like an imperative programmer when designing them. 2D lists initially seemed like
an intuitive and efficient way to store the state. However, when it came to writing the uncover and flag functions
I realised it was not a particularly optimal choice. Modification of a single element required splitting the lists up
two levels deep which made for some overly complex code. 1 also suspect that this approach is not particularly
efficient for data access or modification.

If I was to entirely redesign the project I would try implementing it with a different core data structure. Possible
options include a 2D Data.Array structure that would function somewhat similarly to the current approach, or
possible an association list or Data.Map based structure (which would be indexed by the (row,col) tuples).

I found working with ThreePenny difficult initially, there are limited examples on the web for usage and it took
me quite a bit of time wrestling with it before I had some code with a reasonable structure for the main interface
setup section. I would’ve liked to see a method of including static HTML into a page without having to write all
of it in the ThreePenny eDSL and an ability to prevent the default action triggered by a browser event occurring
(in my case right click opening a context menu) without having to embed a custom script.

	Introduction
	Design and Implementation
	Basic Minesweeper Model
	Creating a Game
	Handling Game Moves
	Uncover
	Flag

	Program Startup
	Rendering the Game Board

	Reflection

